當前位置:首頁 » 比特幣問答 » 比特幣拓撲基金

比特幣拓撲基金

發布時間: 2024-11-20 17:36:20

A. 詳解比特幣挖礦原理

可以將區塊鏈看作一本記錄所有交易的公開總帳簿(列表),比特幣網路中的每個參與者都把它看作一本所有權的權威記錄。

比特幣沒有中心機構,幾乎所有的完整節點都有一份公共總帳的備份,這份總帳可以被視為認證過的記錄。

至今為止,在主幹區塊鏈上,沒有發生一起成功的攻擊,一次都沒有。

通過創造出新區塊,比特幣以一個確定的但不斷減慢的速率被鑄造出來。大約每十分鍾產生一個新區塊,每一個新區塊都伴隨著一定數量從無到有的全新比特幣。每開采210,000個塊,大約耗時4年,貨幣發行速率降低50%。

在2016年的某個時刻,在第420,000個區塊被「挖掘」出來之後降低到12.5比特幣/區塊。在第13,230,000個區塊(大概在2137年被挖出)之前,新幣的發行速度會以指數形式進行64次「二等分」。到那時每區塊發行比特幣數量變為比特幣的最小貨幣單位——1聰。最終,在經過1,344萬個區塊之後,所有的共20,999,999.9769億聰比特幣將全部發行完畢。換句話說, 到2140年左右,會存在接近2,100萬比特幣。在那之後,新的區塊不再包含比特幣獎勵,礦工的收益全部來自交易費。

在收到交易後,每一個節點都會在全網廣播前對這些交易進行校驗,並以接收時的相應順序,為有效的新交易建立一個池(交易池)。

每一個節點在校驗每一筆交易時,都需要對照一個長長的標准列表:

交易的語法和數據結構必須正確。

輸入與輸出列表都不能為空。

交易的位元組大小是小於MAX_BLOCK_SIZE的。

每一個輸出值,以及總量,必須在規定值的范圍內 (小於2,100萬個幣,大於0)。

沒有哈希等於0,N等於-1的輸入(coinbase交易不應當被中繼)。

nLockTime是小於或等於INT_MAX的。

交易的位元組大小是大於或等於100的。

交易中的簽名數量應小於簽名操作數量上限。

解鎖腳本(Sig)只能夠將數字壓入棧中,並且鎖定腳本(Pubkey)必須要符合isStandard的格式 (該格式將會拒絕非標准交易)。

池中或位於主分支區塊中的一個匹配交易必須是存在的。

對於每一個輸入,如果引用的輸出存在於池中任何的交易,該交易將被拒絕。

對於每一個輸入,在主分支和交易池中尋找引用的輸出交易。如果輸出交易缺少任何一個輸入,該交易將成為一個孤立的交易。如果與其匹配的交易還沒有出現在池中,那麼將被加入到孤立交易池中。

對於每一個輸入,如果引用的輸出交易是一個coinbase輸出,該輸入必須至少獲得COINBASE_MATURITY (100)個確認。

對於每一個輸入,引用的輸出是必須存在的,並且沒有被花費。

使用引用的輸出交易獲得輸入值,並檢查每一個輸入值和總值是否在規定值的范圍內 (小於2100萬個幣,大於0)。

如果輸入值的總和小於輸出值的總和,交易將被中止。

如果交易費用太低以至於無法進入一個空的區塊,交易將被拒絕。

每一個輸入的解鎖腳本必須依據相應輸出的鎖定腳本來驗證。

以下挖礦節點取名為 A挖礦節點

挖礦節點時刻監聽著傳播到比特幣網路的新區塊。而這些新加入的區塊對挖礦節點有著特殊的意義。礦工間的競爭以新區塊的傳播而結束,如同宣布誰是最後的贏家。對於礦工們來說,獲得一個新區塊意味著某個參與者贏了,而他們則輸了這場競爭。然而,一輪競爭的結束也代表著下一輪競爭的開始。

驗證交易後,比特幣節點會將這些交易添加到自己的內存池中。內存池也稱作交易池,用來暫存尚未被加入到區塊的交易記錄。

A節點需要為內存池中的每筆交易分配一個優先順序,並選擇較高優先順序的交易記錄來構建候選區塊。

一個交易想要成為「較高優先順序」,需滿足的條件:優先值大於57,600,000,這個值的生成依賴於3個參數:一個比特幣(即1億聰),年齡為一天(144個區塊),交易的大小為250個位元組:

High Priority > 100,000,000 satoshis * 144 blocks / 250 bytes = 57,600,000

區塊中用來存儲交易的前50K位元組是保留給較高優先順序交易的。 節點在填充這50K位元組的時候,會優先考慮這些最高優先順序的交易,不管它們是否包含了礦工費。這種機制使得高優先順序交易即便是零礦工費,也可以優先被處理。

然後,A挖礦節點會選出那些包含最小礦工費的交易,並按照「每千位元組礦工費」進行排序,優先選擇礦工費高的交易來填充剩下的區塊。

如區塊中仍有剩餘空間,A挖礦節點可以選擇那些不含礦工費的交易。有些礦工會竭盡全力將那些不含礦工費的交易整合到區塊中,而其他礦工也許會選擇忽略這些交易。

在區塊被填滿後,內存池中的剩餘交易會成為下一個區塊的候選交易。因為這些交易還留在內存池中,所以隨著新的區塊被加到鏈上,這些交易輸入時所引用UTXO的深度(即交易「塊齡」)也會隨著變大。由於交易的優先值取決於它交易輸入的「塊齡」,所以這個交易的優先值也就隨之增長了。最後,一個零礦工費交易的優先值就有可能會滿足高優先順序的門檻,被免費地打包進區塊。

UTXO(Unspent Transaction Output) : 每筆交易都有若干交易輸入,也就是資金來源,也都有若干筆交易輸出,也就是資金去向。一般來說,每一筆交易都要花費(spend)一筆輸入,產生一筆輸出,而其所產生的輸出,就是「未花費過的交易輸出」,也就是 UTXO。

塊齡:UTXO的「塊齡」是自該UTXO被記錄到區塊鏈為止所經歷過的區塊數,即這個UTXO在區塊鏈中的深度。

區塊中的第一筆交易是筆特殊交易,稱為創幣交易或者coinbase交易。這個交易是由挖礦節點構造並用來獎勵礦工們所做的貢獻的。假設此時一個區塊的獎勵是25比特幣,A挖礦的節點會創建「向A的地址支付25.1個比特幣(包含礦工費0.1個比特幣)」這樣一個交易,把生成交易的獎勵發送到自己的錢包。A挖出區塊獲得的獎勵金額是coinbase獎勵(25個全新的比特幣)和區塊中全部交易礦工費的總和。

A節點已經構建了一個候選區塊,那麼就輪到A的礦機對這個新區塊進行「挖掘」,求解工作量證明演算法以使這個區塊有效。比特幣挖礦過程使用的是SHA256哈希函數。

用最簡單的術語來說, 挖礦節點不斷重復進行嘗試,直到它找到的隨機調整數使得產生的哈希值低於某個特定的目標。 哈希函數的結果無法提前得知,也沒有能得到一個特定哈希值的模式。舉個例子,你一個人在屋裡打檯球,白球從A點到達B點,但是一個人推門進來看到白球在B點,卻無論如何是不知道如何從A到B的。哈希函數的這個特性意味著:得到哈希值的唯一方法是不斷的嘗試,每次隨機修改輸入,直到出現適當的哈希值。

需要以下參數

• block的版本 version

• 上一個block的hash值: prev_hash

• 需要寫入的交易記錄的hash樹的值: merkle_root

• 更新時間: ntime

• 當前難度: nbits

挖礦的過程就是找到x使得

SHA256(SHA256(version + prev_hash + merkle_root + ntime + nbits + x )) < TARGET

上式的x的范圍是0~2^32, TARGET可以根據當前難度求出的。

簡單打個比方,想像人們不斷扔一對色子以得到小於一個特定點數的游戲。第一局,目標是12。只要你不扔出兩個6,你就會贏。然後下一局目標為11。玩家只能扔10或更小的點數才能贏,不過也很簡單。假如幾局之後目標降低為了5。現在有一半機率以上扔出來的色子加起來點數會超過5,因此無效。隨著目標越來越小,要想贏的話,扔色子的次數會指數級的上升。最終當目標為2時(最小可能點數),只有一個人平均扔36次或2%扔的次數中,他才能贏。

如前所述,目標決定了難度,進而影響求解工作量證明演算法所需要的時間。那麼問題來了:為什麼這個難度值是可調整的?由誰來調整?如何調整?

比特幣的區塊平均每10分鍾生成一個。這就是比特幣的心跳,是貨幣發行速率和交易達成速度的基礎。不僅是在短期內,而是在幾十年內它都必須要保持恆定。在此期間,計算機性能將飛速提升。此外,參與挖礦的人和計算機也會不斷變化。為了能讓新區塊的保持10分鍾一個的產生速率,挖礦的難度必須根據這些變化進行調整。事實上,難度是一個動態的參數,會定期調整以達到每10分鍾一個新區塊的目標。簡單地說,難度被設定在,無論挖礦能力如何,新區塊產生速率都保持在10分鍾一個。

那麼,在一個完全去中心化的網路中,這樣的調整是如何做到的呢?難度的調整是在每個完整節點中獨立自動發生的。每2,016個區塊(2周產生的區塊)中的所有節點都會調整難度。難度的調整公式是由最新2,016個區塊的花費時長與20,160分鍾(兩周,即這些區塊以10分鍾一個速率所期望花費的時長)比較得出的。難度是根據實際時長與期望時長的比值進行相應調整的(或變難或變易)。簡單來說,如果網路發現區塊產生速率比10分鍾要快時會增加難度。如果發現比10分鍾慢時則降低難度。

為了防止難度的變化過快,每個周期的調整幅度必須小於一個因子(值為4)。如果要調整的幅度大於4倍,則按4倍調整。由於在下一個2,016區塊的周期不平衡的情況會繼續存在,所以進一步的難度調整會在下一周期進行。因此平衡哈希計算能力和難度的巨大差異有可能需要花費幾個2,016區塊周期才會完成。

舉個例子,當前A節點在挖277,316個區塊,A挖礦節點一旦完成計算,立刻將這個區塊發給它的所有相鄰節點。這些節點在接收並驗證這個新區塊後,也會繼續傳播此區塊。當這個新區塊在網路中擴散時,每個節點都會將它作為第277,316個區塊(父區塊為277,315)加到自身節點的區塊鏈副本中。當挖礦節點收到並驗證了這個新區塊後,它們會放棄之前對構建這個相同高度區塊的計算,並立即開始計算區塊鏈中下一個區塊的工作。

比特幣共識機制的第三步是通過網路中的每個節點獨立校驗每個新區塊。當新區塊在網路中傳播時,每一個節點在將它轉發到其節點之前,會進行一系列的測試去驗證它。這確保了只有有效的區塊會在網路中傳播。

每一個節點對每一個新區塊的獨立校驗,確保了礦工無法欺詐。在前面的章節中,我們看到了礦工們如何去記錄一筆交易,以獲得在此區塊中創造的新比特幣和交易費。為什麼礦工不為他們自己記錄一筆交易去獲得數以千計的比特幣?這是因為每一個節點根據相同的規則對區塊進行校驗。一個無效的coinbase交易將使整個區塊無效,這將導致該區塊被拒絕,因此,該交易就不會成為總賬的一部分。

比特幣去中心化的共識機制的最後一步是將區塊集合至有最大工作量證明的鏈中。一旦一個節點驗證了一個新的區塊,它將嘗試將新的區塊連接到到現存的區塊鏈,將它們組裝起來。

節點維護三種區塊:

· 第一種是連接到主鏈上的,

· 第二種是從主鏈上產生分支的(備用鏈),

· 第三種是在已知鏈中沒有找到已知父區塊的。

有時候,新區塊所延長的區塊鏈並不是主鏈,這一點我們將在下面「 區塊鏈分叉」中看到。

如果節點收到了一個有效的區塊,而在現有的區塊鏈中卻未找到它的父區塊,那麼這個區塊被認為是「孤塊」。孤塊會被保存在孤塊池中,直到它們的父區塊被節點收到。一旦收到了父區塊並且將其連接到現有區塊鏈上,節點就會將孤塊從孤塊池中取出,並且連接到它的父區塊,讓它作為區塊鏈的一部分。當兩個區塊在很短的時間間隔內被挖出來,節點有可能會以相反的順序接收到它們,這個時候孤塊現象就會出現。

選擇了最大難度的區塊鏈後,所有的節點最終在全網范圍內達成共識。隨著更多的工作量證明被添加到鏈中,鏈的暫時性差異最終會得到解決。挖礦節點通過「投票」來選擇它們想要延長的區塊鏈,當它們挖出一個新塊並且延長了一個鏈,新塊本身就代表它們的投票。

因為區塊鏈是去中心化的數據結構,所以不同副本之間不能總是保持一致。區塊有可能在不同時間到達不同節點,導致節點有不同的區塊鏈視角。解決的辦法是, 每一個節點總是選擇並嘗試延長代表累計了最大工作量證明的區塊鏈,也就是最長的或最大累計難度的鏈。

當有兩個候選區塊同時想要延長最長區塊鏈時,分叉事件就會發生。正常情況下,分叉發生在兩名礦工在較短的時間內,各自都算得了工作量證明解的時候。兩個礦工在各自的候選區塊一發現解,便立即傳播自己的「獲勝」區塊到網路中,先是傳播給鄰近的節點而後傳播到整個網路。每個收到有效區塊的節點都會將其並入並延長區塊鏈。如果該節點在隨後又收到了另一個候選區塊,而這個區塊又擁有同樣父區塊,那麼節點會將這個區塊連接到候選鏈上。其結果是,一些節點收到了一個候選區塊,而另一些節點收到了另一個候選區塊,這時兩個不同版本的區塊鏈就出現了。

分叉之前

分叉開始

我們看到兩個礦工幾乎同時挖到了兩個不同的區塊。為了便於跟蹤這個分叉事件,我們設定有一個被標記為紅色的、來自加拿大的區塊,還有一個被標記為綠色的、來自澳大利亞的區塊。

假設有這樣一種情況,一個在加拿大的礦工發現了「紅色」區塊的工作量證明解,在「藍色」的父區塊上延長了塊鏈。幾乎同一時刻,一個澳大利亞的礦工找到了「綠色」區塊的解,也延長了「藍色」區塊。那麼現在我們就有了兩個區塊:一個是源於加拿大的「紅色」區塊;另一個是源於澳大利亞的「綠色」。這兩個區塊都是有效的,均包含有效的工作量證明解並延長同一個父區塊。這個兩個區塊可能包含了幾乎相同的交易,只是在交易的排序上有些許不同。

比特幣網路中鄰近(網路拓撲上的鄰近,而非地理上的)加拿大的節點會首先收到「紅色」區塊,並建立一個最大累計難度的區塊,「紅色」區塊為這個鏈的最後一個區塊(藍色-紅色),同時忽略晚一些到達的「綠色」區塊。相比之下,離澳大利亞更近的節點會判定「綠色」區塊勝出,並以它為最後一個區塊來延長區塊鏈(藍色-綠色),忽略晚幾秒到達的「紅色」區塊。那些首先收到「紅色」區塊的節點,會即刻以這個區塊為父區塊來產生新的候選區塊,並嘗試尋找這個候選區塊的工作量證明解。同樣地,接受「綠色」區塊的節點會以這個區塊為鏈的頂點開始生成新塊,延長這個鏈。

分叉問題幾乎總是在一個區塊內就被解決了。網路中的一部分算力專注於「紅色」區塊為父區塊,在其之上建立新的區塊;另一部分算力則專注在「綠色」區塊上。即便算力在這兩個陣營中平均分配,也總有一個陣營搶在另一個陣營前發現工作量證明解並將其傳播出去。在這個例子中我們可以打個比方,假如工作在「綠色」區塊上的礦工找到了一個「粉色」區塊延長了區塊鏈(藍色-綠色-粉色),他們會立刻傳播這個新區塊,整個網路會都會認為這個區塊是有效的,如上圖所示。

所有在上一輪選擇「綠色」區塊為勝出者的節點會直接將這條鏈延長一個區塊。然而,那些選擇「紅色」區塊為勝出者的節點現在會看到兩個鏈: 「藍色-綠色-粉色」和「藍色-紅色」。 如上圖所示,這些節點會根據結果將 「藍色-綠色-粉色」 這條鏈設置為主鏈,將 「藍色-紅色」 這條鏈設置為備用鏈。 這些節點接納了新的更長的鏈,被迫改變了原有對區塊鏈的觀點,這就叫做鏈的重新共識 。因為「紅」區塊做為父區塊已經不在最長鏈上,導致了他們的候選區塊已經成為了「孤塊」,所以現在任何原本想要在「藍色-紅色」鏈上延長區塊鏈的礦工都會停下來。全網將 「藍色-綠色-粉色」 這條鏈識別為主鏈,「粉色」區塊為這條鏈的最後一個區塊。全部礦工立刻將他們產生的候選區塊的父區塊切換為「粉色」,來延長「藍色-綠色-粉色」這條鏈。

從理論上來說,兩個區塊的分叉是有可能的,這種情況發生在因先前分叉而相互對立起來的礦工,又幾乎同時發現了兩個不同區塊的解。然而,這種情況發生的幾率是很低的。單區塊分叉每周都會發生,而雙塊分叉則非常罕見。

比特幣將區塊間隔設計為10分鍾,是在更快速的交易確認和更低的分叉概率間作出的妥協。更短的區塊產生間隔會讓交易清算更快地完成,也會導致更加頻繁地區塊鏈分叉。與之相對地,更長的間隔會減少分叉數量,卻會導致更長的清算時間。

B. IPFS是什麼

星際文件系統。

IPFS是一種內容可定址的對等超媒體分發協議。IPFS將現有的成功系統分布式哈希表、BitTorrent、版本控制系統Git、自認證文件系統與區塊鏈相結合的文件存儲和內容分發網路協議。IPFS同時也是一個開放源代碼項目。

IPFS屬性:

1、永久的、去中心化保存和共享文件;

2、點對點超媒體:P2P 保存各種各樣類型的數據;

3、版本化:可追溯文件修改歷史。

(2)比特幣拓撲基金擴展閱讀

IPFS優點:

1、內容定址:所有內容(包括鏈接)都由其多哈希校驗和進行唯一標識。

2、防篡改:所有內容都使用其校驗和進行驗證。如果數據被篡改或損壞,則IPFS會檢測到該數據。

3、去冗餘:所有內容完全相同的對象,只存儲一次。

4、PFS並不會要求每一個節點都存儲所有的內容,節點的所有者可以自由選擇想要維持的數據,在備份了自己的數據之外,自願的為其他的關注的內容提供服務。

參考資料來源:網路-星際文件系統

C. 『學概念找員外』有向無環圖DAG的用途

有向無環圖(DAG, Directed Acyclic Graph) :是一個無迴路的有向圖。如果有一個圖,從A點出發到B點,然後經過C點,最後可以順著方向回到A,形成一個閉環,那麼這個圖就不是非向無環圖。如果將從C到A的邊方向改為從A到C,則變成有向無環圖。如圖1 和 圖2。

看到這兩幅圖,應該可以明白了,當然這個圖是很簡單的,只有三個點,事實上可能是由百萬千萬或者更多個點組成的圖。有向無環圖就是從一個圖中的任何一點出發,不管走過多少個分叉路口,都沒有回到原來這個點的可能性。

拓撲排序 :就是一個有向無環圖的所有定點的線性序列。且這個序列必須滿足這兩個條件:

這個東西,是比較難理解,再上圖說話吧。比如在這個有向無環圖中,它用拓撲排序,該怎麼進行呢?

最後,一個完整的拓撲排序就完成了,結果為:1、2、4、3、5。

大家都知道,在比特幣系統中,固定約十分鍾出一個塊,而且一旦打包成功一個區塊,這個區塊的信息還必須同步到其他的所有區塊上面去,這是極其耗費資源和時間的。同時一個塊裡面大概能容納3000筆交易,也就意味著10分鍾才能交易成功3000筆。這個交易速度實在是滿足不了用戶的需求,所以為了解決比特幣這個問題,出現了各種分叉幣,也可謂是把比特幣搞的亂七八糟了。後來以太坊問世後,基於比特幣的基礎上,交易速度提高了不少,每秒交易可達到20筆左右,但是任然有多次的以太坊擁堵事件,證明這個交易速度還遠遠不夠。

在比特幣系統中,如果可以改變51%的節點的記錄數據,那麼就實現了惡意攻擊。然而現在比特幣的大部分算力掌握在少數幾個較大的礦廠手裡,雖然大家都有共識,不會發起惡意攻擊,但是不代表不會有意外事件發生。

隨著計算機硬體的不斷迭代升級,量子計算機的問世,那麼比特幣的加密演算法還會有用嗎?會不會被破解掉?雖然比特幣的哈希演算法可以實時調整難度,但是到底能承受多大的考驗,員外是說不清的。

比特幣用於大額的跨境轉賬或者交易等用途,還是挺實用的,但是誰會去用比特幣購買小件商品?顯然是不可能的,交易手續費就會讓你心疼半天,然後還得再等半天的確認時間。

在區塊鏈的應用上使用了DAG圖之後,可以使得出塊速度變快,因為DAG圖中的每個頂點都是一個在某一時間點打包完成的區塊。與傳統的公鏈一次性只能產出一個區塊來比,DAG的不同節點都可以自己來生成區塊,然後這個區塊只要選擇好自己的下一個或者多個區塊作為自己的子區塊就好了。僅僅是在這一點上,出塊速度就會高出比特幣多個量級,交易速度簡直可以快的飛起。

基於DAG的數據結構來說的話,對於裡面的每個節點來說,因為與之相連的節點很少,而且是有方向性的,只能往前不能後退,所以都不需要再等大量的其他節點達成共識後,再同時確認下一筆交易了,避免了因網路延遲和數據同步造成的大量時間浪費。所以,使用DAG記賬的節點的延展性可得到大幅度提升。

從上面這張圖中,可以看到DAG的每一個節點都可以向下連接任意多個新的節點,這個有什麼用呢?如果在這一個區塊內部交易數據或者與之相連的下一步的交易數據也是過多的話,那麼就可以分成足夠多個區塊來共同分擔區塊壓力,從而可以提高交易的吞吐量。相比於比特幣這樣的系統每次只能打包一個區塊來說,簡直是完勝。

沒有一個東西是完美的,有優勢就有缺點,所以DAG的缺點目前在安全問題上面,主要是雙花和影子鏈攻擊。這個問題員外目前還沒有找到足夠好的答案,只能後續再說了。

本文參加優享優質經驗徵集計劃,經驗即價值,優享為成長買單
全球首個去中心化經驗價值共享平台「優享」開啟今夏最強空投!注冊即送UX,最高5000UX,更多價值,等你發現!注冊鏈接

D. 比特幣什麼東西P2p是什麼里念密碼忘記了向誰去喊冤為什麼會有0.1個幣的概念為什麼全年無休

比特幣(英語:Bitcoin,縮寫:BTC 或 XBT)是一種基於去中心化,採用點對點網路與共識主動性,開放源代碼,以區塊鏈作為底層技術的加密貨幣,比特幣由中本聰(網名)(Satoshi Nakamoto)於2008年10月31日發表論文,2009年1月3日,創世區塊誕生。在某些國家、央行、政府機關則將比特幣視為虛擬商品,而不認為是貨幣。

任何人皆可參與比特幣活動,可以通過稱為挖礦的電腦運算來發行。比特幣協議數量上限為2100萬個,以避免通貨膨脹問題。使用比特幣是透過私鑰作為數字簽名,允許個人直接支付給他人,與現金相同,不需經過如銀行、清算中心、證券商、電子支付平台等第三方機構,從而避免了高手續費、繁瑣流程以及受監管性的問題,任何用戶只要擁有可連線互聯網的數字設備皆可使用。

但是由於比特幣區塊鏈在一定時間內能接受的交易量有限,約每10分鍾能接受最多2,500筆交易,交易手續費也會隨著比特幣交易量而波動,在2017年6月,小於1毫比特的交易,交易手續費已遠遠大於交易金額;在2017年12月,Steam宣布停止接受比特幣,理由是「交易費用高昂,且波動性大」,在2018年2月,平均交易手續費從2017年第四季度的34美元,下降至約1美元,而此問題,正在試圖以閃電網路之類的技術來解決,擴展比特幣一定時間內的交易量。
P2P可以指:
對等網路(peer-to-peer),一種網路技術和網路拓撲結構。

文件分享,常利用點對點技術。
點對點協議(Point-to-Point Protocol),撥號上網計算,通常縮寫PPP。
網路借貸(Peer-to-Peer Lending),又稱P2P借貸,在中國大陸也被稱為網路借貸、P2P理財。
收費服務模式(pay to play)。
一種用甲胺制甲基苯丙胺的製法。

E. 什麼是比特幣網路

比特幣採用了基於互聯網的 P2P (peer-to-peer)網路架構。 P2P 是指位於同一網路中的每台計算機都彼此對等,各個節點共同提供網路服務,不存在「特殊」節點。每個網路節點以「扁平(flat)」的拓撲結構相互連通。在 P2P 網路中不存在任何服務端(server)、中央化的服務、以及層級結構。 P2P 網路的節點之間交互運作、協同處理:每個節點在對外提供服務的同時也使用網路中其他節點所提供的服務。P2P 網路也因此具有可靠性、去中心化,以及開放性。
比特幣所採用的 P2P 網路結構不僅僅是選擇拓撲結構這樣簡單。比特幣被設計為一種點對點的數字現金系統,它的網路架構即是這種核心特性的反映,也是該特性的基石。去中心化控制是設計時的核心原則,它只能通過維持一種扁平化、去中心化的 P2P 共識網路來實現。
比特幣 P2P 網路中的各個節點相互對等,但是根據所提供的功能不同,各個節點的分工也不盡相同。每個比特幣節點都是路由、區塊鏈資料庫、挖礦、錢包服務的功能集合。一個比特幣網路全節點包括四個功能:錢包、礦工、完整區塊鏈、網路路由節點。
一些節點保有一份完整的、最新的區塊鏈拷貝,這樣的節點被稱為「全節點」。全節點能夠獨立自主地校驗所有交易,而不需藉由任何外部參照。另外還有一些節點只保留了區塊鏈的一部分,他們通過一種名為「簡單支付驗證(SPV)」的方式來完成交易驗證。這樣的節點被稱為「SPV節點」,又稱「輕量級節點」。
挖礦節點通過運行在特殊設備硬體設備上的工作量證明(POW)演算法,以相互競爭的方式創建新的區塊。一些挖礦節點同時也是全節點,保有區塊鏈的完整拷貝;還有一些參與礦池挖礦的節點是輕量級節點,它們必須依賴礦池伺服器維護的全節點進行工作。
用戶錢包也可以作為全節點的一部分,這在桌面比特幣客戶端比較常見。當前,越來越多用戶錢包都是SPV節點,尤其是運行於諸如智能手機等資源受限設備上的比特幣錢包應用,而這正變得越來越普遍。

熱點內容
22家區塊鏈產業園 發布:2025-01-11 00:16:47 瀏覽:879
國家衛建委疾控中心主任高福幾號去的武漢 發布:2025-01-11 00:04:24 瀏覽:737
流量幣挖礦用什麼硬碟 發布:2025-01-10 23:59:45 瀏覽:555
usdt也是虛擬幣嗎 發布:2025-01-10 23:54:27 瀏覽:903
礦建卷揚機屬於特種設備嗎 發布:2025-01-10 23:38:13 瀏覽:700
法國接受比特幣為通用貨幣嗎 發布:2025-01-10 23:38:11 瀏覽:724
比特幣韭菜圖 發布:2025-01-10 23:28:46 瀏覽:717
ipfs挖礦算力 發布:2025-01-10 23:10:07 瀏覽:392
cgminer挖eth 發布:2025-01-10 23:00:20 瀏覽:717
潛伏挖礦木馬 發布:2025-01-10 22:59:51 瀏覽:32